Admin

· Lab 2 grades & Feedback posted on Moodle

Outline For today

- the goal is to see how good the model is for a certain task - Evaluation Metrics - Confusion matrices - Precision and recall
- Introduction to probability

Goals of Evaluation

- Think about what metrics are important for the problem at hand
- Compare different methods or models on the same problem
- Common set of tools that other researchers/users can understand

Different metrics for different problems! Ex: checking credit card transactions, be more risk— averse; spum filters, be less risk—averse

Training and Testing (high-level idea)

- Separate data into "train" and "test"
 N = num training examples
 m = num testing examples
- · Fit (create) the model using training data
- · Evaluate the model using testing data

Confusion Matrices

		Predicted		ed class		
		Negative		Positive		
True class	Negative	True negative (TN)		False positive (FP) "false alarm"		
	Positive	False ne (FN "mis)		oositive TP)	
N* P*						

(1-error)

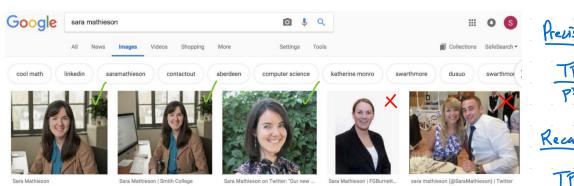
Error Accuracy Precision Recall

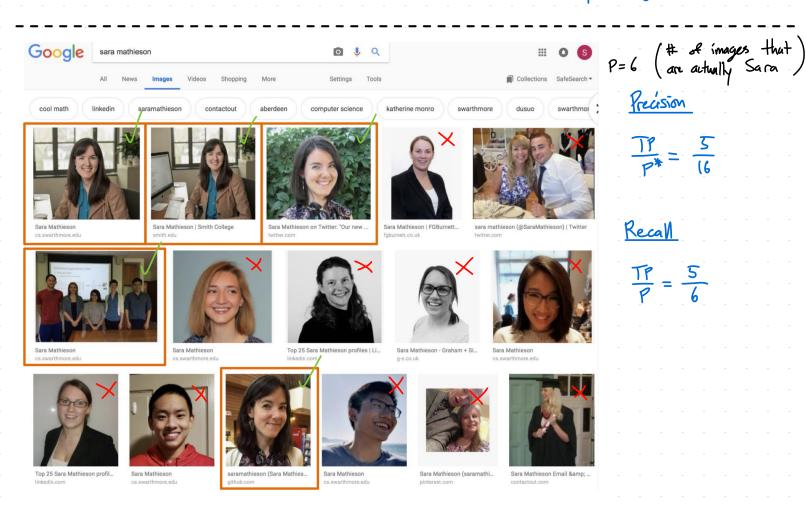
FN+FP TN+TP

everything everything P*

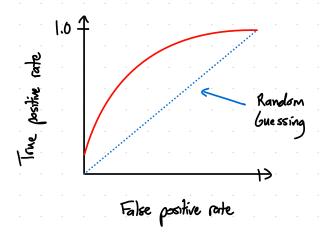
P*

true positive rate

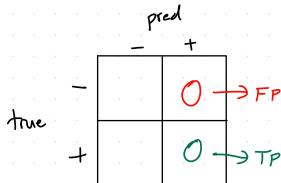

False Positive Kate


Precision and Recall

- Recision: of all the "flagged" examples, which ones are actually relevant (i.e. positive)?
- · Recall: of all the relevant results, which ones did I actually return?



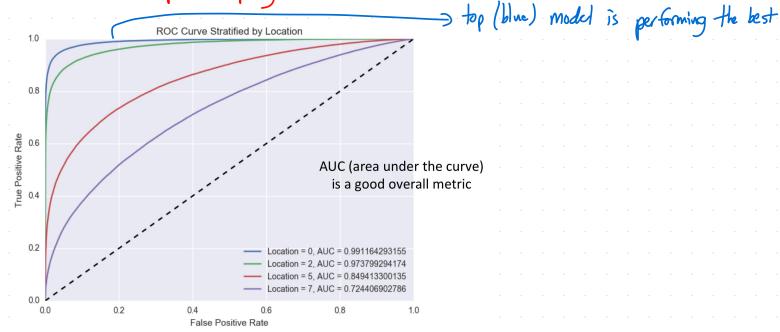
P=6 (# of images that)
are actually Sara)


ROC curve (Receiver Operating Characteristic)

If we classify eventhing as negative:

TPR =
$$\frac{TP}{N} = \frac{0}{...} = 0$$

FPR = $\frac{FP}{P} = \frac{0}{...} = 0$



IF we classify eventhing as positive:

TPR =
$$\frac{TP}{N} = 1$$

FPR = $\frac{FP}{P} = 1$

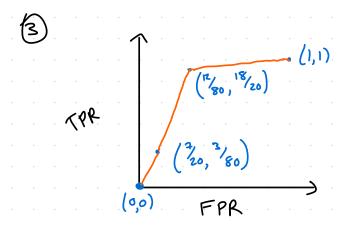
pred

How to get a ROC curve for probabilistic methods?

- Usually we use 0.5 as a threshold for binary classification
- Vary the threshold! (i.e. choose 0,0.1,0.2,...)

$$-P(y=1|x)<0.2$$

HANDOUT 8


- Pred +

17 3
$$n = 80$$

Tive + 13 7 $p = 20$
 $n = 90$ $p = 10$

recall =
$$\frac{TP}{P} = \frac{7}{20} = 35\%$$

 $FPR = \frac{FP}{N} = \frac{3}{80}$

errecall is TPR!

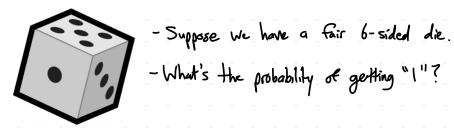
End of content for Miltern 1 (take-home, details soon)

Intro to Probability

- The probability of an event e has a number of epistemological interpretations
- Assuming we have data, we can count the number of times e occurs in the dataset to estimate the probability of e, P(e).

$$P(e) = \frac{\text{count}(e)}{\text{count}(\text{all events})}$$

- If we put all events in a bag, shake it up, and choose one at random (called sampling), how likely are we to get e?


- Suppose we flip a fair coin

 What is the probability of heads, P(e=H)?

 We have "all" of two possibilities, $e \in EH, T3$.

 $P(e=H) = \frac{count(H)}{count(T)}$

$$-P(e=H)=\frac{count(H)}{count(H)+count(T)}$$

$$\frac{\text{count (s)}}{\text{count (2)} + \text{count (3)} + \dots + \text{count (6)}} = \frac{1}{|+|+|+|+|} = \frac{1}{6}$$